Merge Sort
Reviewing what I studied, how this work will be explained as well.
This sorting algorithm is based on the devide and conquer
strategy. The steps in simple array are as follows:
- Divide the input array into two halves. (Divide)
- Sort each half. (Conquer)
- Merge the two halves. (Combine)
Basically, we’re breaking the problem of sorting the array into two smaller problems. (sub-problems), then we merge the two halves, which are sorted.
The problem state: Given some array, and sort it in increasing order. There are two solution can exist: bottom up (for loop), and top down (recursive). Let’s explore what are the code looks like, and the logic behind. If the size of the array or the vector is 0 or 1, it is already sorted. The sort doesn’t happen when it’s divided, it happens when it’s combining(merging).
Let’s look at the recursive way to solve this first (top-down merge sort)
void Merge(vector<int>& a, int lo, int mid, int hi)
{
aux.resize(a.size())
int i = lo; j = mid + 1;
for (int k = lo; k <= hi, k++)
{
aux[k] = a[k];
}
// you can do while in the similar way, which can be way easier than this
for (int k = lo; k <= hi; k++)
{
if (i > mid) a[k] = aux[j++]; // left array is already sorted, now look at right array
else if (j > hi) a[k] = aux[i++]; // right array is already sorted, now look at left array
else if (aux[i] < aux[j]) a[k] = aux[i]; // compare the value, get the min value
else a[k] = aux[i++]; // just copy the value
}
}
void SortHelper(vector<int>& a, int lo, int hi)
{
if(hi <= lo) return;
int mid = lo + (hi - lo) / 2;
SortHelper(a, lo, mid);
SortHelper(a, mid+1, hi);
Merge(a, lo, mid, hi);
}
int main()
{
std::vector<int> vec = {3, 5, 8, 9, 6, 2};
SortHelper(vec, 0, vec.size() - 1);
}
Let’s look at the bottom-up approach
void Sort(vector<int>& a)
{
aux.resize(a.size());
int N = a.size();
for (int sz = 1; sz < N; sz = sz + sz) {
for (int lo = 0; lo < N - sz; lo += sz + sz)
Merge(a, lo, lo + sz - 1, std::min(lo + sz + sz - 1, N - 1));
}
}
void Merge(vector<int>& a, int lo, int mid, int hi)
{
int i = lo, j = mid + 1;
if (a[mid] <= a[j]) return;
for (int k = lo; k <= hi; k++)
aux[k] = a[k];
for (int k = lo; k <= hi; k++)
{
if (i > mid) a[k] = aux[j++];
else if (j > hi) a[k] = aux[i++];
else if (aux[j] < aux[i]) a[k] = aux[j++];
else a[k] = aux[i++];
}
}
int main()
{
std::vector<int> vec = {3, 5, 8, 9, 6, 2};
Sort(vec, 0, vec.size() - 1);
}
Time Complexity & Accuracy
- this is definitive way to sort array or vector. If we have a n problem, we divided into n/2 and so on, then level is created is log(N), so this becomes O(n * log n)