Karatsuba Algorithm
Before Gettign Into Karatsuba Algorithm
When I was a graduate student, I worked on a project related to Addition, Subtraction, Division, and Multiplication operations. The focus was on how to perform each operation more efficiently, primarily from a hardware perspective (including topics like adding multiplexers).
Let’s first examine example code for Addition, Subtraction, and Multiplication. These are implemented in C++, with the assumption that the first digit is always larger than the second digit. The key characteristic is that all operations are handled as strings.
Addition
string Add(string str1, string str2)
{
if (!str1.size() && !str2.size())
return "0";
int N = max(str1.size(), str2.size());
str1 = string(N - str1.size(), '0') + str1;
str2 = string(N - str2.size(), '0') + str2;
string result(N, '0');
int carry = 0;
for (int i = N - 1; i >= 0; i--)
{
int n1 = str1[i] - '0';
int n2 = str2[i] - '0';
int sum = n1 + n2 + carry;
carry = sum / 10;
result[i] = char(sum % 10 + '0');
}
if (carry > 0)
{
result.insert(0, string(1, carry + '0')); // carry insert '1'
}
return result;
}
I have performance metrics for this code based on N. Considering the time complexity, it’s approximately T(N) ≈ N. Of course, when an insert occurs, there might be a constant factor multiplied.
Subtraction
string Subtract(string str1, string str2)
{
if (!str1.size() && !str2.size())
return "0";
int N = max(str1.size(), str2.size());
str1 = string(N - str1.size(), '0') + str1;
str2 = string(N - str2.size(), '0') + str2;
string result(N, '0');
int carry = 0;
for (int i = N - 1; i >= 0; i--)
{
int n1 = str1[i] - '0';
int n2 = str2[i] - '0';
int sum = n1 - n2 + carry + 10;
carry = sum / 10;
result[i] = char(sum % 10 + '0');
carry -= 1;
}
if (result[0] == '0')
{
result.replace(0, 1, "");
}
return result;
}
Similarly, I have performance metrics for this code based on N. The time complexity is approximately T(N) ≈ N.
Multiplication
string Multiply(string str1, string str2)
{
if (!str1.size() && !str2.size())
return "0";
int N = max(str1.size(), str2.size());
str1 = string(N - str1.size(), '0') + str1;
str2 = string(N - str2.size(), '0') + str2;
string result(2 * N, '0');
for (int i = N - 1; i >= 0; i--)
{
int carry = 0;
int n1 = str1[i] - '0';
int k = N + i;
for (int j = N - 1; j >= 0; j--)
{
int n2 = str2[j] - '0';
int sum = n1 * n2 + int(result[k] - '0') + carry;
carry = sum / 10;
result[k] = char(sum % 10 + '0');
k -= 1;
std::cout << n1 << " " << n2 << " " << carry << " " << result << endl;
}
result[k] = char(carry + '0');
}
int i = 0;
while (result[i] == '0') i += 1;
result = result.substr(i, 2 * N - i);
return result;
}
This case might be a bit different. Since there are two loops, we can express the complexity as (N-1) * (N-1) = N². In the process of finding the index of ‘0’, it can be expressed as constant * N². Of course, we might not always discuss the constant factor, but the main point here is to identify what has a major impact.
Karatsuba Algorithm
The Karatsuba algorithm is an efficient multiplication algorithm that uses a divide-and-conquer approach to multiply large numbers. Developed by Anatoly Karatsuba in 1960, it reduces the complexity from O(n²) in the standard multiplication algorithm to approximately O(n^(log₂3)) ≈ O(n^1.585).
Let’s analyze the implementation:
string KaratsubaHelper(string str1, string str2, int level) // level은 디버깅용
{
cout << "Level " << level << " : " << str1 << " x " << str2 << endl;
int N = max(str1.size(), str2.size());
str1.insert(0, string(N - str1.size(), '0'));
str2.insert(0, string(N - str2.size(), '0'));
if (N == 1)
{
string result = to_string(stoi(str1) * stoi(str2));
return result;
}
int mid = N / 2;
string a = str1.substr(0, mid);
string b = str1.substr(mid, N - mid);
string c = str2.substr(0, mid);
string d = str2.substr(mid, N - mid);
string ac = KaratsubaHelper(a, c, level + 1);
ac.append(string((N - mid) * 2, '0'));
return string("0");
}
string Karatsuba(string str1, string str2)
{
if (!str1.size() || !str2.size()) return "0";
string result = KaratsubaHelper(str1, str2, 0);
int i = 0;
while (result[i] == '0') i += 1;
result = result.substr(i, result.size() - i);
return result;
}
Key Insights
The implementation above is incomplete but demonstrates the core concept of the Karatsuba algorithm. Here’s how it works:
- Padding: First, we ensure both numbers have the same number of digits by padding with leading zeros.
- Base Case: If we’re down to single-digit numbers, we perform a direct multiplication.
- Divide: For larger numbers, we split each number into two parts:
- If we represent the numbers as X = a·10^(n/2) + b and Y = c·10^(n/2) + d Where a, b, c, and d are n/2-digit numbers
- Recursive Multiplication: The complete algorithm would compute:
- ac = a × c
- bd = b × d
- (a+b)(c+d) = ac + ad + bc + bd
- ad + bc = (a+b)(c+d) - ac - bd
- Combine: The result is ac·10^n + (ad+bc)·10^(n/2) + bd
- The current implementation only calculates ac and appends the appropriate number of zeros, but is missing the calculations for bd and (ad+bc).
Optimizations
The key insight of Karatsuba is that we can compute the product of two n-digit numbers with only three recursive multiplications instead of four:
- ac
- bd
- (a+b)(c+d)
From these, we derive ad+bc = (a+b)(c+d) - ac - bd, reducing the number of recursive calls and improving efficiency.
Time Complexity
The time complexity is O(n^(log₂3)) ≈ O(n^1.585), which is significantly better than the O(n²) complexity of the standard multiplication algorithm for large numbers.
To complete this implementation, we would need to:
- Calculate bd = b × d
- Calculate (a+b)(c+d)
- Derive ad+bc
- Combine all terms with appropriate powers of 10
This algorithm is particularly useful for multiplying very large integers that exceed the capacity of built-in numeric types.