Directed Cycle Detection
Cycle detection in a directed graph is a fundamental problem in graph theory with applications in deadlock detection, dependency resolution, and circuit analysis. The algorithm I’ve implemented uses a depth-first search (DFS) approach with a recursive traversal strategy to identify cycles in directed graphs.
Key Concepts
The algorithm relies on three key data structures:
- A visited flag for each vertex to track which vertices have been explored
- An on_stack array to track vertices currently in the DFS recursion stack
- An edge_to array to maintain the DFS tree structure for cycle reconstruction
Implementation
struct Vertex
{
Vertex(int v) { index = v; }
int index = -1;
bool visited = false;
vector<Vertex*> out_neighboors;
}
class Graph
{
public:
Graph(int num_vertices)
{
vertices.resize(num_vertices);
for (int i = 0; i < num_vertices; i++)
vertices[i] = new Vertex(i);
}
~Graph()
{
for (auto* v : vertices)
delete v;
}
void addEdge(int v, int w)
{
verticies[v]->out_neighboors.push_back(vertices[w]);
}
void DetectCycle()
{
on_stack.resize(vertices.size(), false);
cycle.clear();
edge_to.resize(vertices.size(), nullptr);
for (auto* v : vertices)
v->visited = false;
for (auto* v : vertices)
{
DetectCycleRecurr(v)
if (!cycle.empty()) {
cout << "cycle Detected" << endl;
}
}
}
void DetectCycleRecurr(Vertex* v)
{
v->visited = true;
on_stack[v->index] = true;
for(auto* w : v->out_neighboors)
{
if (!cycle.empty())
return;
else if (!w->visited)
{
edge_to[w->index] = v;
DetectCycleRecurr(w);
}
else if (on_stack[w->index])
{
Vertex* x = v;
cycle.push_back(x);
while(x->index != w->index)
{
cycle.push_back(x);
x = edge_to[x->index]
}
reverse(cycle.begin(), cycle.end())
return;
}
}
}
private:
vector<Vertex*> vertices;
vector<Vertex*> cycle;
vector<bool> stack;
vector<Vertex*> edge_to;
}
int main()
{
Graph g(3);
g.addEdge(0, 1);
g.addEdge(1, 2);
g.addEdge(2, 0);
}
Time Complexity
Time Complexity: O(V + E) where V is the number of vertices and E is the number of edges. Each vertex and edge is processed exactly once in the worst case
The cycle reconstruction takes at most O(V) time
Space Complexity: O(V)
on_stack, edge_to, and recursion stack each require O(V) space. The cycle array stores at most V vertices